Tail Behavior of Random Products and Stochastic Exponentials

نویسندگان

  • SERGE COHEN
  • THOMAS MIKOSCH
چکیده

In this paper we study the distributional tail behavior of the solution to a linear stochastic differential equation driven by infinite variance α-stable Lévy motion. We show that the solution is regularly varying with index α. An important step in the proof is the study of a Poisson number of products of independent random variables with regularly varying tail. The study of these products deserves its own interest because it involves interesting saddle-point approximation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications

In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...

متن کامل

Analytical and Statistical Analysis of the Effect of Electric Vehicle Aggregator on the Stochastic Behavior of LMP Using LMP Decomposition

The main goal of this paper is to analytically analyze of the effect of the electric vehicle aggregators on the statistical behaviors of Locational Marginal Prices (LMPs) of busses, considering network congestion. In order to achieve this aim, at the first step, by extending the LMP decomposition into 6 sections in Lemma1, the sensitivities of LMPs to the power generation of aggregators in each...

متن کامل

Tail Probabilities of Randomly Weighted Sums of Random Variables with Dominated Variation

This paper investigates the asymptotic behavior of tail probabilities of randomly weighted sums of independent heavy-tailed random variables, where the weights form another sequence of nonnegative and arbitrarily dependent random variables. The results obtained are further applied to derive asymptotic estimates for the ruin probabilities in a discrete time risk model with dependent stochastic r...

متن کامل

The behavior of the reliability functions and stochastic orders in family of the Kumaraswamy-G distributions

The Kumaraswamy distribution is a two-parameter distribution on the interval (0,1) that is very similar to beta distribution. This distribution is applicable to many natural phenomena whose outcomes have lower and upper bounds, such as the proportion of people from society who consume certain products in a given interval.  In this paper, we introduce the family of Kumaraswamy-G distribution, an...

متن کامل

An Extension to the Economic Production Quantity Problem with Deteriorating Products Considering Random Machine Breakdown and Stochastic Repair Time

The recent advances in manufacturing systems motivate several studies to focus on Economic Production Quantity (EPQ) problem. Althuogh there are several extentions to the EPQ, this paper provides a new extension by considering some of the real world parameters like: (a) shortages in the form of partial backordering, (b) inventory can deteriorate stochastically, (c) machine can break down stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007